Bézoutova rovnost

Bézoutova rovnost je lineární diofantická rovnice v teorii čísel. Říká, že největší společný dělitel dvou přirozených čísel a a b lze zapsat jako lineární kombinaci těchto dvou čísel, jejíž koeficienty jsou celá čísla – nazývají se Bézoutovy koeficienty nebo Bézoutova čísla:

N S D ( a , b ) = α a + β b ; a , b N ; α , β Z {\displaystyle \mathrm {NSD} (a,b)=\alpha a+\beta b;a,b\in \mathbb {N} ;\alpha ,\beta \in \mathbb {Z} }

Algoritmus

Bézoutovy koeficienty lze určit rozšířeným Eukleidovým algoritmem. Tato čísla nejsou určena jednoznačně. Pokud jsou řešením koeficienty (α, β), pak existuje nekonečně mnoho dalších koeficientů:

{ ( α + k b N S D ( a , b ) ,   β k a N S D ( a , b ) ) k Z } {\displaystyle \left\{\left(\alpha +{\frac {kb}{\mathrm {NSD} (a,b)}},\ \beta -{\frac {ka}{\mathrm {NSD} (a,b)}}\right)\mid k\in \mathbb {Z} \right\}}

Příklad

Největší společný dělitel čísel 12 a 42 je 6. Bézoutova rovnost tedy je:

α 12 + β 42 = 6 {\displaystyle \alpha \cdot 12+\beta \cdot 42=6}

Jedno z možných řešení je (α, β) = (−3, 1), tedy (−3)·12 + 1·42 = 6. Jiné možné řešení je (4, −1).

Zobecnění

Bézoutova rovnost může být rozšířena jako lineární kombinace více než dvou čísel. Pro libovolná čísla a 1 , , a n {\displaystyle a_{1},\ldots ,a_{n}} se společným dělitelem d existují koeficienty α 1 , , α n {\displaystyle \alpha _{1},\ldots ,\alpha _{n}} tak, že:

α 1 a 1 + + α n a n = d {\displaystyle \alpha _{1}a_{1}+\cdots +\alpha _{n}a_{n}=d}

Největší společný dělitel čísel a 1 , , a n {\displaystyle a_{1},\ldots ,a_{n}} je vlastně nejmenší kladné číslo, které lze zapsat jako lineární kombinaci a 1 , , a n {\displaystyle a_{1},\ldots ,a_{n}} , jejíž koeficienty jsou celá čísla.

Bézoutova rovnost také existuje v jiných algebraických strukturách než v celých číslech. Nalézt ji pro libovolné dva prvky rozšířeným Eukleidovým algoritmem lze ve všech Eukleidovských oborech a ty obory, v nichž je zaručena její existence pro libovolné dva prvky, se nazývají Bézoutovy obory.

Důkaz

d je největší společný dělitel čísel a a b, p = a / d a q = b / d, pak p a q jsou nesoudělná čísla. Uvažujme nyní čísla p, 2p, …, (q−1)p. Žádné z těchto čísel není kongruentní nule modulo q a jsou také jednoznačná modulo q. To znamená, že (p, 2p, …, (q−1)p) modulo q je permutace (1, 2, …, q − 1). Proto musí existovat číslo α, 1 ≤ αq − 1 tak, že αp (mod q) ≡ 1 (mod q). To znamená, že existuje i číslo β tak, že αp + βq = 1. Po vynásobení d dostaneme Bézoutovu rovnost αa + βb = d.

Externí odkazy

  • (anglicky) Online kalkulačka Bézoutovy rovnosti
Autoritní data Editovat na Wikidatech
  • LCCN: sh2007006114
  • NLI: 987007535386805171