Agmon's inequality

In mathematical analysis, Agmon's inequalities, named after Shmuel Agmon,[1] consist of two closely related interpolation inequalities between the Lebesgue space L {\displaystyle L^{\infty }} and the Sobolev spaces H s {\displaystyle H^{s}} . It is useful in the study of partial differential equations.

Let u H 2 ( Ω ) H 0 1 ( Ω ) {\displaystyle u\in H^{2}(\Omega )\cap H_{0}^{1}(\Omega )} where Ω R 3 {\displaystyle \Omega \subset \mathbb {R} ^{3}} [vague]. Then Agmon's inequalities in 3D state that there exists a constant C {\displaystyle C} such that

u L ( Ω ) C u H 1 ( Ω ) 1 / 2 u H 2 ( Ω ) 1 / 2 , {\displaystyle \displaystyle \|u\|_{L^{\infty }(\Omega )}\leq C\|u\|_{H^{1}(\Omega )}^{1/2}\|u\|_{H^{2}(\Omega )}^{1/2},}

and

u L ( Ω ) C u L 2 ( Ω ) 1 / 4 u H 2 ( Ω ) 3 / 4 . {\displaystyle \displaystyle \|u\|_{L^{\infty }(\Omega )}\leq C\|u\|_{L^{2}(\Omega )}^{1/4}\|u\|_{H^{2}(\Omega )}^{3/4}.}

In 2D, the first inequality still holds, but not the second: let u H 2 ( Ω ) H 0 1 ( Ω ) {\displaystyle u\in H^{2}(\Omega )\cap H_{0}^{1}(\Omega )} where Ω R 2 {\displaystyle \Omega \subset \mathbb {R} ^{2}} . Then Agmon's inequality in 2D states that there exists a constant C {\displaystyle C} such that

u L ( Ω ) C u L 2 ( Ω ) 1 / 2 u H 2 ( Ω ) 1 / 2 . {\displaystyle \displaystyle \|u\|_{L^{\infty }(\Omega )}\leq C\|u\|_{L^{2}(\Omega )}^{1/2}\|u\|_{H^{2}(\Omega )}^{1/2}.}

For the n {\displaystyle n} -dimensional case, choose s 1 {\displaystyle s_{1}} and s 2 {\displaystyle s_{2}} such that s 1 < n 2 < s 2 {\displaystyle s_{1}<{\tfrac {n}{2}}<s_{2}} . Then, if 0 < θ < 1 {\displaystyle 0<\theta <1} and n 2 = θ s 1 + ( 1 θ ) s 2 {\displaystyle {\tfrac {n}{2}}=\theta s_{1}+(1-\theta )s_{2}} , the following inequality holds for any u H s 2 ( Ω ) {\displaystyle u\in H^{s_{2}}(\Omega )}

u L ( Ω ) C u H s 1 ( Ω ) θ u H s 2 ( Ω ) 1 θ {\displaystyle \displaystyle \|u\|_{L^{\infty }(\Omega )}\leq C\|u\|_{H^{s_{1}}(\Omega )}^{\theta }\|u\|_{H^{s_{2}}(\Omega )}^{1-\theta }}

See also

Notes

  1. ^ Lemma 13.2, in: Agmon, Shmuel, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, RI, 2010. ISBN 978-0-8218-4910-1.

References

  • Agmon, Shmuel (2010). Lectures on elliptic boundary value problems. Providence, RI: AMS Chelsea Publishing. ISBN 978-0-8218-4910-1.
  • Foias, Ciprian; Manley, O.; Rosa, R.; Temam, R. (2001). Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press. ISBN 0-521-36032-3.


  • v
  • t
  • e