DDX11

Protein-coding gene in humans
DDX11
Identifiers
AliasesDDX11, CHL1, CHLR1, KRG2, WABS, DEAD/H-box helicase 11
External IDsOMIM: 601150; MGI: 2443590; HomoloGene: 68973; GeneCards: DDX11; OMA:DDX11 - orthologs
Gene location (Human)
Chromosome 12 (human)
Chr.Chromosome 12 (human)[1]
Chromosome 12 (human)
Genomic location for DDX11
Genomic location for DDX11
Band12p11.21Start31,073,860 bp[1]
End31,104,799 bp[1]
Gene location (Mouse)
Chromosome 17 (mouse)
Chr.Chromosome 17 (mouse)[2]
Chromosome 17 (mouse)
Genomic location for DDX11
Genomic location for DDX11
Band17|17 E1.1Start66,430,515 bp[2]
End66,459,169 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • mucosa of transverse colon

  • body of pancreas

  • left ovary

  • body of uterus

  • right ovary

  • apex of heart

  • lymph node

  • left testis

  • ventricular zone

  • spleen
Top expressed in
  • primary oocyte

  • hand

  • spermatocyte

  • secondary oocyte

  • Paneth cell

  • zygote

  • epiblast

  • ventricular zone

  • tail of embryo

  • renal corpuscle
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
  • 4 iron, 4 sulfur cluster binding
  • nucleotide binding
  • helicase activity
  • iron-sulfur cluster binding
  • metal ion binding
  • single-stranded DNA binding
  • hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
  • protein binding
  • RNA binding
  • nucleic acid binding
  • double-stranded DNA binding
  • hydrolase activity
  • ATP binding
  • DNA binding
  • chromatin binding
  • DNA replication origin binding
  • single-stranded RNA binding
  • DNA helicase activity
  • ATP-dependent activity, acting on DNA
  • ATP-dependent activity, acting on RNA
  • triplex DNA binding
  • G-quadruplex DNA binding
Cellular component
  • nucleolus
  • extracellular exosome
  • nucleus
  • spindle pole
  • fibrillar center
  • nucleoplasm
  • chromosome
  • cytoplasm
  • centrosome
  • microtubule organizing center
  • cytoskeleton
  • midbody
  • mitotic cohesin complex
  • Ctf18 RFC-like complex
Biological process
  • sister chromatid cohesion
  • IRE1-mediated unfolded protein response
  • viral process
  • nucleobase-containing compound metabolic process
  • DNA replication
  • DNA repair
  • transcription, DNA-templated
  • regulation of transcription, DNA-templated
  • cellular response to DNA damage stimulus
  • multicellular organism development
  • replication fork processing
  • positive regulation of endodeoxyribonuclease activity
  • negative regulation of protein binding
  • DNA duplex unwinding
  • positive regulation of chromatin binding
  • G-quadruplex DNA unwinding
  • positive regulation of sister chromatid cohesion
  • cellular response to hydroxyurea
  • cellular response to cisplatin
  • positive regulation of transcription of nucleolar large rRNA by RNA polymerase I
  • cellular response to bleomycin
  • nucleolar chromatin organization
  • positive regulation of double-strand break repair
  • establishment of sister chromatid cohesion
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

1663

320209

Ensembl

ENSG00000013573

ENSMUSG00000035842

UniProt

Q96FC9

Q6AXC6

RefSeq (mRNA)
NM_001257144
NM_001257145
NM_004399
NM_030653
NM_030655

NM_152438

NM_001003919
NM_001348292

RefSeq (protein)

NP_001244073
NP_001244074
NP_004390
NP_085911
NP_689651

NP_001003919
NP_001335221

Location (UCSC)Chr 12: 31.07 – 31.1 MbChr 17: 66.43 – 66.46 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Probable ATP-dependent RNA helicase DDX11 is an enzyme that in humans is encoded by the DDX11 gene.[5]

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein, which is an enzyme that possesses both ATPase and DNA helicase activities. This gene is a homolog of the yeast CHL1 gene, and may function to maintain chromosome transmission fidelity and genome stability. Alternative splicing results in multiple transcript variants encoding distinct isoforms.[5]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000013573 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000035842 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S. cerevisiae)".

Further reading

  • Baens M, Aerssens J, van Zand K, et al. (1996). "Isolation and regional assignment of human chromosome 12p cDNAs". Genomics. 29 (1): 44–52. doi:10.1006/geno.1995.1213. PMID 8530100.
  • Frank S, Werner S (1996). "The human homologue of the yeast CHL1 gene is a novel keratinocyte growth factor-regulated gene". J. Biol. Chem. 271 (40): 24337–40. doi:10.1074/jbc.271.40.24337. PMID 8798685.
  • Amann J, Valentine M, Kidd VJ, Lahti JM (1997). "Localization of chi1-related helicase genes to human chromosome regions 12p11 and 12p13: similarity between parts of these genes and conserved human telomeric-associated DNA". Genomics. 32 (2): 260–5. doi:10.1006/geno.1996.0113. PMID 8833153.
  • Amann J, Kidd VJ, Lahti JM (1997). "Characterization of putative human homologues of the yeast chromosome transmission fidelity gene, CHL1". J. Biol. Chem. 272 (6): 3823–32. doi:10.1074/jbc.272.6.3823. PMID 9013641.
  • Hirota Y, Lahti JM (2000). "Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase". Nucleic Acids Res. 28 (4): 917–24. doi:10.1093/nar/28.4.917. PMC 102573. PMID 10648783.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
  • Vasa-Nicotera M, Brouilette S, Mangino M, et al. (2005). "Mapping of a major locus that determines telomere length in humans". Am. J. Hum. Genet. 76 (1): 147–51. doi:10.1086/426734. PMC 1196417. PMID 15520935.
  • Parish JL, Rosa J, Wang X, et al. (2007). "The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells". J. Cell Sci. 119 (Pt 23): 4857–65. doi:10.1242/jcs.03262. PMID 17105772. S2CID 26412273.
  • Parish JL, Bean AM, Park RB, Androphy EJ (2007). "ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance". Mol. Cell. 24 (6): 867–76. doi:10.1016/j.molcel.2006.11.005. PMID 17189189.


  • v
  • t
  • e