DDX41

Protein-coding gene in the species Homo sapiens

DDX41
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2P6N

Identifiers
AliasesDDX41, ABS, MPLPF, DEAD-box helicase 41
External IDsOMIM: 608170; MGI: 1920185; HomoloGene: 9431; GeneCards: DDX41; OMA:DDX41 - orthologs
Gene location (Human)
Chromosome 5 (human)
Chr.Chromosome 5 (human)[1]
Chromosome 5 (human)
Genomic location for DDX41
Genomic location for DDX41
Band5q35.3Start177,511,577 bp[1]
End177,516,961 bp[1]
Gene location (Mouse)
Chromosome 13 (mouse)
Chr.Chromosome 13 (mouse)[2]
Chromosome 13 (mouse)
Genomic location for DDX41
Genomic location for DDX41
Band13|13 B1Start55,678,223 bp[2]
End55,684,471 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • granulocyte

  • right frontal lobe

  • anterior cingulate cortex

  • sural nerve

  • mucosa of transverse colon

  • right hemisphere of cerebellum

  • stromal cell of endometrium

  • prefrontal cortex

  • nucleus accumbens

  • monocyte
Top expressed in
  • primitive streak

  • right kidney

  • proximal tubule

  • granulocyte

  • spermatocyte

  • embryo

  • ventricular zone

  • epiblast

  • embryo

  • neural layer of retina
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • DNA binding
  • nucleotide binding
  • helicase activity
  • metal ion binding
  • protein binding
  • nucleic acid binding
  • hydrolase activity
  • ATP binding
  • RNA binding
Cellular component
  • cytosol
  • catalytic step 2 spliceosome
  • membrane
  • endoplasmic reticulum
  • nucleus
  • spliceosomal complex
  • nucleolus
  • cytoplasm
Biological process
  • cellular response to interferon-beta
  • mRNA processing
  • regulation of type I interferon production
  • defense response to virus
  • RNA secondary structure unwinding
  • RNA splicing
  • positive regulation of type I interferon production
  • positive regulation of transcription by RNA polymerase II
  • apoptotic process
  • mRNA splicing, via spliceosome
  • cell population proliferation
  • cell differentiation
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

51428

72935

Ensembl

ENSG00000183258

ENSMUSG00000021494

UniProt

Q9UJV9

Q91VN6

RefSeq (mRNA)

NM_016222
NM_001321732
NM_001321830

NM_134059

RefSeq (protein)

NP_001308661
NP_001308759
NP_057306

NP_598820

Location (UCSC)Chr 5: 177.51 – 177.52 MbChr 13: 55.68 – 55.68 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Probable ATP-dependent RNA helicase DDX41 is an enzyme that in humans is encoded by the DDX41 gene.[5][6]

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of the DEAD box protein family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a member of this family. The function of this member has not been determined. Based on studies in Drosophila, the gene is widely required during post-transcriptional gene expression.[6] Germ line DDX41 mutations define a unique subtype of myeloid neoplasms.[7]

Function

DDX41 is believed to take part in several cell functions. It is mainly concentrated in the nucleus of the cell, but it can also be expressed in the cytoplasm.[8][9] In the cytoplasm it takes part in the Interferon I production pathway by recognizing foreign cytoplasmic DNA and signaling STING.[10] It has been observed that hypomorphic DDX41 mutations impair the immune system response to viral and bacterial infections. In the nucleus, DDX41 is believed to regulate the transcriptional elongation process signaling Pol II to slow down the elongation while the splicing process is taking place. Under-expression and inhibition of DDX41 have been shown to lead to the formation of an R-loop which results in transcriptional errors with no specific patterns.[8] DDX41 is also believed to take part in the ribosome biogenesis process, given its implications in the processing of snoRNA.[11]

It has been shown that DDX41 germ-line mutations are associated with myelodysplastic syndrome and acute myeloid leukemia.[12]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000183258 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021494 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Irion U, Leptin M (December 1999). "Developmental and cell biological functions of the Drosophila DEAD-box protein abstrakt". Current Biology. 9 (23): 1373–1381. Bibcode:1999CBio....9.1373I. doi:10.1016/S0960-9822(00)80082-2. PMID 10607561. S2CID 16448276.
  6. ^ a b "Entrez Gene: DDX41 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41".
  7. ^ Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, et al. (February 2023). "Germ line DDX41 mutations define a unique subtype of myeloid neoplasms". Blood. 141 (5): 534–549. doi:10.1182/blood.2022018221. PMC 10935555. PMID 36322930. S2CID 253266118.
  8. ^ a b Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, et al. (November 2022). "DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells". Leukemia. 36 (11): 2605–2620. doi:10.1038/s41375-022-01708-9. PMC 9613458. PMID 36229594.
  9. ^ Jiang Y, Zhu Y, Qiu W, Liu YJ, Cheng G, Liu ZJ, et al. (January 2017). "Structural and functional analyses of human DDX41 DEAD domain". Protein & Cell. 8 (1): 72–76. doi:10.1007/s13238-016-0351-9. PMC 5233616. PMID 27928732.
  10. ^ Omura H, Oikawa D, Nakane T, Kato M, Ishii R, Ishitani R, et al. (October 2016). "Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide". Scientific Reports. 6 (1): 34756. Bibcode:2016NatSR...634756O. doi:10.1038/srep34756. PMC 5056382. PMID 27721487.
  11. ^ Tungalag S, Shinriki S, Hirayama M, Nagamachi A, Kanai A, Inaba T, et al. (June 2023). "Ribosome profiling analysis reveals the roles of DDX41 in translational regulation". International Journal of Hematology. 117 (6): 876–888. doi:10.1007/s12185-023-03558-2. PMID 36780110. S2CID 256826641.

Further reading

  • Kim K, Ong F, Sasaki K (January 2023). "Current Understanding of DDX41 Mutations in Myeloid Neoplasms". Cancers. 15 (2): 344. doi:10.3390/cancers15020344. PMC 9857085. PMID 36672294.
  • Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–174. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–156. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ (April 2002). "Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis". RNA. 8 (4): 426–439. doi:10.1017/S1355838202021088. PMC 1370266. PMID 11991638.
  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, et al. (August 2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12130–12135. Bibcode:2004PNAS..10112130B. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, et al. (January 2005). "Nucleolar proteome dynamics". Nature. 433 (7021): 77–83. Bibcode:2005Natur.433...77A. doi:10.1038/nature03207. PMID 15635413. S2CID 4344740.
  • Abdul-Ghani M, Hartman KL, Ngsee JK (July 2005). "Abstrakt interacts with and regulates the expression of sorting nexin-2". Journal of Cellular Physiology. 204 (1): 210–218. doi:10.1002/jcp.20285. PMC 2963638. PMID 15690390.
  • Nousiainen M, Silljé HH, Sauer G, Nigg EA, Körner R (April 2006). "Phosphoproteome analysis of the human mitotic spindle". Proceedings of the National Academy of Sciences of the United States of America. 103 (14): 5391–5396. Bibcode:2006PNAS..103.5391N. doi:10.1073/pnas.0507066103. PMC 1459365. PMID 16565220.
  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. (November 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–648. doi:10.1016/j.cell.2006.09.026. PMID 17081983. S2CID 7827573.
  • v
  • t
  • e
  • 2p6n: Human DEAD-box RNA helicase DDX41, helicase domain
    2p6n: Human DEAD-box RNA helicase DDX41, helicase domain


Stub icon

This article on a gene on human chromosome 5 is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e