Dual Hahn polynomials

In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice x ( s ) = s ( s + 1 ) {\displaystyle x(s)=s(s+1)} and are defined as

w n ( c ) ( s , a , b ) = ( a b + 1 ) n ( a + c + 1 ) n n ! 3 F 2 ( n , a s , a + s + 1 ; a b + a , a + c + 1 ; 1 ) {\displaystyle w_{n}^{(c)}(s,a,b)={\frac {(a-b+1)_{n}(a+c+1)_{n}}{n!}}{}_{3}F_{2}(-n,a-s,a+s+1;a-b+a,a+c+1;1)}

for n = 0 , 1 , . . . , N 1 {\displaystyle n=0,1,...,N-1} and the parameters a , b , c {\displaystyle a,b,c} are restricted to 1 2 < a < b , | c | < 1 + a , b = a + N {\displaystyle -{\frac {1}{2}}<a<b,|c|<1+a,b=a+N} .

Note that ( u ) k {\displaystyle (u)_{k}} is the rising factorial, otherwise known as the Pochhammer symbol, and 3 F 2 ( ) {\displaystyle {}_{3}F_{2}(\cdot )} is the generalized hypergeometric functions

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Orthogonality

The dual Hahn polynomials have the orthogonality condition

s = a b 1 w n ( c ) ( s , a , b ) w m ( c ) ( s , a , b ) ρ ( s ) [ Δ x ( s 1 2 ) ] = δ n m d n 2 {\displaystyle \sum _{s=a}^{b-1}w_{n}^{(c)}(s,a,b)w_{m}^{(c)}(s,a,b)\rho (s)[\Delta x(s-{\frac {1}{2}})]=\delta _{nm}d_{n}^{2}}

for n , m = 0 , 1 , . . . , N 1 {\displaystyle n,m=0,1,...,N-1} . Where Δ x ( s ) = x ( s + 1 ) x ( s ) {\displaystyle \Delta x(s)=x(s+1)-x(s)} ,

ρ ( s ) = Γ ( a + s + 1 ) Γ ( c + s + 1 ) Γ ( s a + 1 ) Γ ( b s ) Γ ( b + s + 1 ) Γ ( s c + 1 ) {\displaystyle \rho (s)={\frac {\Gamma (a+s+1)\Gamma (c+s+1)}{\Gamma (s-a+1)\Gamma (b-s)\Gamma (b+s+1)\Gamma (s-c+1)}}}

and

d n 2 = Γ ( a + c + n + a ) n ! ( b a n 1 ) ! Γ ( b c n ) . {\displaystyle d_{n}^{2}={\frac {\Gamma (a+c+n+a)}{n!(b-a-n-1)!\Gamma (b-c-n)}}.}

Numerical instability

As the value of n {\displaystyle n} increases, the values that the discrete polynomials obtain also increases. As a result, to obtain numerical stability in calculating the polynomials you would use the renormalized dual Hahn polynomial as defined as

w ^ n ( c ) ( s , a , b ) = w n ( c ) ( s , a , b ) ρ ( s ) d n 2 [ Δ x ( s 1 2 ) ] {\displaystyle {\hat {w}}_{n}^{(c)}(s,a,b)=w_{n}^{(c)}(s,a,b){\sqrt {{\frac {\rho (s)}{d_{n}^{2}}}[\Delta x(s-{\frac {1}{2}})]}}}

for n = 0 , 1 , . . . , N 1 {\displaystyle n=0,1,...,N-1} .

Then the orthogonality condition becomes

s = a b 1 w ^ n ( c ) ( s , a , b ) w ^ m ( c ) ( s , a , b ) = δ m , n {\displaystyle \sum _{s=a}^{b-1}{\hat {w}}_{n}^{(c)}(s,a,b){\hat {w}}_{m}^{(c)}(s,a,b)=\delta _{m,n}}

for n , m = 0 , 1 , . . . , N 1 {\displaystyle n,m=0,1,...,N-1}

Relation to other polynomials

The Hahn polynomials, h n ( x , N ; α , β ) {\displaystyle h_{n}(x,N;\alpha ,\beta )} , is defined on the uniform lattice x ( s ) = s {\displaystyle x(s)=s} , and the parameters a , b , c {\displaystyle a,b,c} are defined as a = ( α + β ) / 2 , b = a + N , c = ( β α ) / 2 {\displaystyle a=(\alpha +\beta )/2,b=a+N,c=(\beta -\alpha )/2} . Then setting α = β = 0 {\displaystyle \alpha =\beta =0} the Hahn polynomials become the Chebyshev polynomials. Note that the dual Hahn polynomials have a q-analog with an extra parameter q known as the dual q-Hahn polynomials.

Racah polynomials are a generalization of dual Hahn polynomials.

References

  • Zhu, Hongqing (2007), "Image analysis by discrete orthogonal dual Hahn moments" (PDF), Pattern Recognition Letters, 28 (13): 1688–1704, doi:10.1016/j.patrec.2007.04.013
  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2 (1–2): 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.