GAPVD1

Protein-coding gene in the species Homo sapiens

GAPVD1
Identifiers
AliasesGAPVD1, GAPEX5, GAPex-5, RAP6, GTPase activating protein and VPS9 domains 1
External IDsOMIM: 611714; MGI: 1913941; HomoloGene: 32637; GeneCards: GAPVD1; OMA:GAPVD1 - orthologs
Gene location (Human)
Chromosome 9 (human)
Chr.Chromosome 9 (human)[1]
Chromosome 9 (human)
Genomic location for GAPVD1
Genomic location for GAPVD1
Band9q33.3Start125,261,794 bp[1]
End125,367,207 bp[1]
Gene location (Mouse)
Chromosome 2 (mouse)
Chr.Chromosome 2 (mouse)[2]
Chromosome 2 (mouse)
Genomic location for GAPVD1
Genomic location for GAPVD1
Band2|2 BStart34,674,594 bp[2]
End34,755,232 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • bronchial epithelial cell

  • nasal epithelium

  • amniotic fluid

  • palpebral conjunctiva

  • skin of thigh

  • mucosa of paranasal sinus

  • Brodmann area 23

  • cartilage tissue

  • visceral pleura

  • middle temporal gyrus
Top expressed in
  • hand

  • otolith organ

  • utricle

  • Rostral migratory stream

  • superior cervical ganglion

  • hair follicle

  • stroma of bone marrow

  • ciliary body

  • foot

  • conjunctival fornix
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
  • GTPase activating protein binding
  • GTPase activator activity
  • guanyl-nucleotide exchange factor activity
  • cadherin binding
  • protein binding
Cellular component
  • endosome
  • membrane
  • cytosol
Biological process
  • regulation of GTPase activity
  • endocytosis
  • regulation of protein transport
  • signal transduction
  • positive regulation of GTPase activity
  • membrane organization
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

26130

66691

Ensembl

ENSG00000165219

ENSMUSG00000026867

UniProt

Q14C86

Q6PAR5

RefSeq (mRNA)
NM_001282679
NM_001282680
NM_001282681
NM_015635
NM_001330777

NM_001330778
NM_001354293
NM_001354294
NM_001354295
NM_001354296
NM_001354297
NM_001354298
NM_001354299
NM_001354300
NM_001354301

NM_025709
NM_001356441

RefSeq (protein)
NP_001269608
NP_001269609
NP_001269610
NP_001317706
NP_001317707

NP_056450
NP_001341222
NP_001341223
NP_001341224
NP_001341225
NP_001341226
NP_001341227
NP_001341228
NP_001341229
NP_001341230

NP_079985
NP_001343370

Location (UCSC)Chr 9: 125.26 – 125.37 MbChr 2: 34.67 – 34.76 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

GTPase activating protein and VPS9 domains 1, also known as GAPVD1, Gapex-5 and RME-6 is a protein which in humans is encoded by the GAPVD1 gene.[5][6]

Function

GAPVD1 is Rab GTPase guanine nucleotide exchange factor essential for activation of RAB5A during engulfment of apoptotic cells.[7] GAPVD1 is also involved in the degradation of the epidermal growth factor receptor.[8] Gapex-5 mediated activation of Rab5 has been implicated in the insulin stimulated formation of plasma membrane phosphatidylinositol-3-phosphate.[9]

Structure

Based on sequence homology, mammalian Gapex-5 has been shown to have an amino-terminal Ras GAP domain, a central polyproline (SH3 binding) region and a carboxy-terminal Rab GEF domain. The RabGEF domain has been suggested to activate Rab5[10] and Rab31.[11]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000165219 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026867 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: GAPVD1 GTPase activating protein and VPS9 domains 1".
  6. ^ Hunker CM, Galvis A, Kruk I, Giambini H, Veisaga ML, Barbieri MA (February 2006). "Rab5-activating protein 6, a novel endosomal protein with a role in endocytosis". Biochem. Biophys. Res. Commun. 340 (3): 967–75. doi:10.1016/j.bbrc.2005.12.099. PMID 16410077.
  7. ^ Kitano M, Nakaya M, Nakamura T, Nagata S, Matsuda M (May 2008). "Imaging of Rab5 activity identifies essential regulators for phagosome maturation". Nature. 453 (7192): 241–5. Bibcode:2008Natur.453..241K. doi:10.1038/nature06857. PMID 18385674.
  8. ^ Su X, Kong C, Stahl PD (July 2007). "GAPex-5 mediates ubiquitination, trafficking, and degradation of epidermal growth factor receptor". J. Biol. Chem. 282 (29): 21278–84. doi:10.1074/jbc.M703725200. PMID 17545148.
  9. ^ Lodhi IJ, Bridges D, Chiang SH, Zhang Y, Cheng A, Geletka LM, Weisman LS, Saltiel AR (July 2008). "Insulin Stimulates Phosphatidylinositol 3-Phosphate Production via the Activation of Rab5". Mol. Biol. Cell. 19 (7): 2718–28. doi:10.1091/mbc.E08-01-0105. PMC 2441665. PMID 18434594.
  10. ^ Su X, Lodhi IJ, Saltiel AR, Stahl PD (September 2006). "Insulin-stimulated Interaction between insulin receptor substrate 1 and p85alpha and activation of protein kinase B/Akt require Rab5". J. Biol. Chem. 281 (38): 27982–90. doi:10.1074/jbc.M602873200. PMID 16880210.
  11. ^ Lodhi IJ, Chiang SH, Chang L, Vollenweider D, Watson RT, Inoue M, Pessin JE, Saltiel AR (January 2007). "Gapex-5, a Rab31 Guanine Nucleotide Exchange Factor that Regulates Glut4 Trafficking in Adipocytes". Cell Metab. 5 (1): 59–72. doi:10.1016/j.cmet.2006.12.006. PMC 1779820. PMID 17189207.

Further reading

  • Su X, Kong C, Stahl PD (2007). "GAPex-5 mediates ubiquitination, trafficking, and degradation of epidermal growth factor receptor". J. Biol. Chem. 282 (29): 21278–84. doi:10.1074/jbc.M703725200. PMID 17545148.
  • Hunker CM, Galvis A, Kruk I, et al. (2006). "Rab5-activating protein 6, a novel endosomal protein with a role in endocytosis". Biochem. Biophys. Res. Commun. 340 (3): 967–75. doi:10.1016/j.bbrc.2005.12.099. PMID 16410077.
  • Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Curr. Biol. 14 (16): 1436–50. Bibcode:2004CBio...14.1436J. doi:10.1016/j.cub.2004.07.051. PMID 15324660. S2CID 2371325.
  • Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. Bibcode:2004PNAS..10112130B. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Nagase T, Kikuno R, Ishikawa K, et al. (2000). "Prediction of the coding sequences of unidentified human genes. XVII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (2): 143–50. doi:10.1093/dnares/7.2.143. PMID 10819331.
  • Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Adams MD, Kerlavage AR, Fleischmann RD, et al. (1995). "Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence" (PDF). Nature. 377 (6547 Suppl): 3–174. PMID 7566098.


  • v
  • t
  • e