Hinge loss

Loss function in machine learning
The vertical axis represents the value of the Hinge loss (in blue) and zero-one loss (in green) for fixed t = 1, while the horizontal axis represents the value of the prediction y. The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine.

In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs).[1]

For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as

( y ) = max ( 0 , 1 t y ) {\displaystyle \ell (y)=\max(0,1-t\cdot y)}

Note that y {\displaystyle y} should be the "raw" output of the classifier's decision function, not the predicted class label. For instance, in linear SVMs, y = w x + b {\displaystyle y=\mathbf {w} \cdot \mathbf {x} +b} , where ( w , b ) {\displaystyle (\mathbf {w} ,b)} are the parameters of the hyperplane and x {\displaystyle \mathbf {x} } is the input variable(s).

When t and y have the same sign (meaning y predicts the right class) and | y | 1 {\displaystyle |y|\geq 1} , the hinge loss ( y ) = 0 {\displaystyle \ell (y)=0} . When they have opposite signs, ( y ) {\displaystyle \ell (y)} increases linearly with y, and similarly if | y | < 1 {\displaystyle |y|<1} , even if it has the same sign (correct prediction, but not by enough margin).

Extensions

While binary SVMs are commonly extended to multiclass classification in a one-vs.-all or one-vs.-one fashion,[2] it is also possible to extend the hinge loss itself for such an end. Several different variations of multiclass hinge loss have been proposed.[3] For example, Crammer and Singer[4] defined it for a linear classifier as[5]

( y ) = max ( 0 , 1 + max y t w y x w t x ) {\displaystyle \ell (y)=\max(0,1+\max _{y\neq t}\mathbf {w} _{y}\mathbf {x} -\mathbf {w} _{t}\mathbf {x} )} ,

where t {\displaystyle t} is the target label, w t {\displaystyle \mathbf {w} _{t}} and w y {\displaystyle \mathbf {w} _{y}} are the model parameters.

Weston and Watkins provided a similar definition, but with a sum rather than a max:[6][3]

( y ) = y t max ( 0 , 1 + w y x w t x ) {\displaystyle \ell (y)=\sum _{y\neq t}\max(0,1+\mathbf {w} _{y}\mathbf {x} -\mathbf {w} _{t}\mathbf {x} )} .

In structured prediction, the hinge loss can be further extended to structured output spaces. Structured SVMs with margin rescaling use the following variant, where w denotes the SVM's parameters, y the SVM's predictions, φ the joint feature function, and Δ the Hamming loss:

( y ) = max ( 0 , Δ ( y , t ) + w , ϕ ( x , y ) w , ϕ ( x , t ) ) = max ( 0 , max y Y ( Δ ( y , t ) + w , ϕ ( x , y ) ) w , ϕ ( x , t ) ) {\displaystyle {\begin{aligned}\ell (\mathbf {y} )&=\max(0,\Delta (\mathbf {y} ,\mathbf {t} )+\langle \mathbf {w} ,\phi (\mathbf {x} ,\mathbf {y} )\rangle -\langle \mathbf {w} ,\phi (\mathbf {x} ,\mathbf {t} )\rangle )\\&=\max(0,\max _{y\in {\mathcal {Y}}}\left(\Delta (\mathbf {y} ,\mathbf {t} )+\langle \mathbf {w} ,\phi (\mathbf {x} ,\mathbf {y} )\rangle \right)-\langle \mathbf {w} ,\phi (\mathbf {x} ,\mathbf {t} )\rangle )\end{aligned}}} .

Optimization

The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it. It is not differentiable, but has a subgradient with respect to model parameters w of a linear SVM with score function y = w x {\displaystyle y=\mathbf {w} \cdot \mathbf {x} } that is given by

w i = { t x i if  t y < 1 , 0 otherwise . {\displaystyle {\frac {\partial \ell }{\partial w_{i}}}={\begin{cases}-t\cdot x_{i}&{\text{if }}t\cdot y<1,\\0&{\text{otherwise}}.\end{cases}}}
Plot of three variants of the hinge loss as a function of z = ty: the "ordinary" variant (blue), its square (green), and the piece-wise smooth version by Rennie and Srebro (red). The y-axis is the l(y) hinge loss, and the x-axis is the parameter t

However, since the derivative of the hinge loss at t y = 1 {\displaystyle ty=1} is undefined, smoothed versions may be preferred for optimization, such as Rennie and Srebro's[7]

( y ) = { 1 2 t y if     t y 0 , 1 2 ( 1 t y ) 2 if     0 < t y < 1 , 0 if     1 t y {\displaystyle \ell (y)={\begin{cases}{\frac {1}{2}}-ty&{\text{if}}~~ty\leq 0,\\{\frac {1}{2}}(1-ty)^{2}&{\text{if}}~~0<ty<1,\\0&{\text{if}}~~1\leq ty\end{cases}}}

or the quadratically smoothed

γ ( y ) = { 1 2 γ max ( 0 , 1 t y ) 2 if     t y 1 γ , 1 γ 2 t y otherwise {\displaystyle \ell _{\gamma }(y)={\begin{cases}{\frac {1}{2\gamma }}\max(0,1-ty)^{2}&{\text{if}}~~ty\geq 1-\gamma ,\\1-{\frac {\gamma }{2}}-ty&{\text{otherwise}}\end{cases}}}

suggested by Zhang.[8] The modified Huber loss L {\displaystyle L} is a special case of this loss function with γ = 2 {\displaystyle \gamma =2} , specifically L ( t , y ) = 4 2 ( y ) {\displaystyle L(t,y)=4\ell _{2}(y)} .

See also

References

  1. ^ Rosasco, L.; De Vito, E. D.; Caponnetto, A.; Piana, M.; Verri, A. (2004). "Are Loss Functions All the Same?" (PDF). Neural Computation. 16 (5): 1063–1076. CiteSeerX 10.1.1.109.6786. doi:10.1162/089976604773135104. PMID 15070510.
  2. ^ Duan, K. B.; Keerthi, S. S. (2005). "Which Is the Best Multiclass SVM Method? An Empirical Study" (PDF). Multiple Classifier Systems. LNCS. Vol. 3541. pp. 278–285. CiteSeerX 10.1.1.110.6789. doi:10.1007/11494683_28. ISBN 978-3-540-26306-7.
  3. ^ a b Doğan, Ürün; Glasmachers, Tobias; Igel, Christian (2016). "A Unified View on Multi-class Support Vector Classification" (PDF). Journal of Machine Learning Research. 17: 1–32.
  4. ^ Crammer, Koby; Singer, Yoram (2001). "On the algorithmic implementation of multiclass kernel-based vector machines" (PDF). Journal of Machine Learning Research. 2: 265–292.
  5. ^ Moore, Robert C.; DeNero, John (2011). "L1 and L2 regularization for multiclass hinge loss models" (PDF). Proc. Symp. on Machine Learning in Speech and Language Processing.
  6. ^ Weston, Jason; Watkins, Chris (1999). "Support Vector Machines for Multi-Class Pattern Recognition" (PDF). European Symposium on Artificial Neural Networks.
  7. ^ Rennie, Jason D. M.; Srebro, Nathan (2005). Loss Functions for Preference Levels: Regression with Discrete Ordered Labels (PDF). Proc. IJCAI Multidisciplinary Workshop on Advances in Preference Handling.
  8. ^ Zhang, Tong (2004). Solving large scale linear prediction problems using stochastic gradient descent algorithms (PDF). ICML.