Metric-affine gravitation theory

In comparison with General Relativity, dynamic variables of metric-affine gravitation theory are both a pseudo-Riemannian metric and a general linear connection on a world manifold X {\displaystyle X} . Metric-affine gravitation theory has been suggested as a natural generalization of Einstein–Cartan theory of gravity with torsion where a linear connection obeys the condition that a covariant derivative of a metric equals zero.[1]

Metric-affine gravitation theory straightforwardly comes from gauge gravitation theory where a general linear connection plays the role of a gauge field.[2] Let T X {\displaystyle TX} be the tangent bundle over a manifold X {\displaystyle X} provided with bundle coordinates ( x μ , x ˙ μ ) {\displaystyle (x^{\mu },{\dot {x}}^{\mu })} . A general linear connection on T X {\displaystyle TX} is represented by a connection tangent-valued form:

Γ = d x λ ( λ + Γ λ μ ν x ˙ ν ˙ μ ) . {\displaystyle \Gamma =dx^{\lambda }\otimes (\partial _{\lambda }+\Gamma _{\lambda }{}^{\mu }{}_{\nu }{\dot {x}}^{\nu }{\dot {\partial }}_{\mu }).} [3]

It is associated to a principal connection on the principal frame bundle F X {\displaystyle FX} of frames in the tangent spaces to X {\displaystyle X} whose structure group is a general linear group G L ( 4 , R ) {\displaystyle GL(4,\mathbb {R} )} .[4] Consequently, it can be treated as a gauge field. A pseudo-Riemannian metric g = g μ ν d x μ d x ν {\displaystyle g=g_{\mu \nu }dx^{\mu }\otimes dx^{\nu }} on T X {\displaystyle TX} is defined as a global section of the quotient bundle F X / S O ( 1 , 3 ) X {\displaystyle FX/SO(1,3)\to X} , where S O ( 1 , 3 ) {\displaystyle SO(1,3)} is the Lorentz group. Therefore, one can regard it as a classical Higgs field in gauge gravitation theory. Gauge symmetries of metric-affine gravitation theory are general covariant transformations.

It is essential that, given a pseudo-Riemannian metric g {\displaystyle g} , any linear connection Γ {\displaystyle \Gamma } on T X {\displaystyle TX} admits a splitting

Γ μ ν α = { μ ν α } + 1 2 C μ ν α + S μ ν α {\displaystyle \Gamma _{\mu \nu \alpha }=\{_{\mu \nu \alpha }\}+{\frac {1}{2}}C_{\mu \nu \alpha }+S_{\mu \nu \alpha }}

in the Christoffel symbols

{ μ ν α } = 1 2 ( μ g ν α + α g ν μ ν g μ α ) , {\displaystyle \{_{\mu \nu \alpha }\}=-{\frac {1}{2}}(\partial _{\mu }g_{\nu \alpha }+\partial _{\alpha }g_{\nu \mu }-\partial _{\nu }g_{\mu \alpha }),}

a nonmetricity tensor

C μ ν α = C μ α ν = μ Γ g ν α = μ g ν α + Γ μ ν α + Γ μ α ν {\displaystyle C_{\mu \nu \alpha }=C_{\mu \alpha \nu }=\nabla _{\mu }^{\Gamma }g_{\nu \alpha }=\partial _{\mu }g_{\nu \alpha }+\Gamma _{\mu \nu \alpha }+\Gamma _{\mu \alpha \nu }}

and a contorsion tensor

S μ ν α = S μ α ν = 1 2 ( T ν μ α + T ν α μ + T μ ν α + C α ν μ C ν α μ ) , {\displaystyle S_{\mu \nu \alpha }=-S_{\mu \alpha \nu }={\frac {1}{2}}(T_{\nu \mu \alpha }+T_{\nu \alpha \mu }+T_{\mu \nu \alpha }+C_{\alpha \nu \mu }-C_{\nu \alpha \mu }),}

where

T μ ν α = 1 2 ( Γ μ ν α Γ α ν μ ) {\displaystyle T_{\mu \nu \alpha }={\frac {1}{2}}(\Gamma _{\mu \nu \alpha }-\Gamma _{\alpha \nu \mu })}

is the torsion tensor of Γ {\displaystyle \Gamma } .

Due to this splitting, metric-affine gravitation theory possesses a different collection of dynamic variables which are a pseudo-Riemannian metric, a non-metricity tensor and a torsion tensor. As a consequence, a Lagrangian of metric-affine gravitation theory can contain different terms expressed both in a curvature of a connection Γ {\displaystyle \Gamma } and its torsion and non-metricity tensors. In particular, a metric-affine f(R) gravity, whose Lagrangian is an arbitrary function of a scalar curvature R {\displaystyle R} of Γ {\displaystyle \Gamma } , is considered.

A linear connection Γ {\displaystyle \Gamma } is called the metric connection for a pseudo-Riemannian metric g {\displaystyle g} if g {\displaystyle g} is its integral section, i.e., the metricity condition

μ Γ g ν α = 0 {\displaystyle \nabla _{\mu }^{\Gamma }g_{\nu \alpha }=0}

holds. A metric connection reads

Γ μ ν α = { μ ν α } + 1 2 ( T ν μ α + T ν α μ + T μ ν α ) . {\displaystyle \Gamma _{\mu \nu \alpha }=\{_{\mu \nu \alpha }\}+{\frac {1}{2}}(T_{\nu \mu \alpha }+T_{\nu \alpha \mu }+T_{\mu \nu \alpha }).}

For instance, the Levi-Civita connection in General Relativity is a torsion-free metric connection.

A metric connection is associated to a principal connection on a Lorentz reduced subbundle F g X {\displaystyle F^{g}X} of the frame bundle F X {\displaystyle FX} corresponding to a section g {\displaystyle g} of the quotient bundle F X / S O ( 1 , 3 ) X {\displaystyle FX/SO(1,3)\to X} . Restricted to metric connections, metric-affine gravitation theory comes to the above-mentioned Einstein – Cartan gravitation theory.

At the same time, any linear connection Γ {\displaystyle \Gamma } defines a principal adapted connection Γ g {\displaystyle \Gamma ^{g}} on a Lorentz reduced subbundle F g X {\displaystyle F^{g}X} by its restriction to a Lorentz subalgebra of a Lie algebra of a general linear group G L ( 4 , R ) {\displaystyle GL(4,\mathbb {R} )} . For instance, the Dirac operator in metric-affine gravitation theory in the presence of a general linear connection Γ {\displaystyle \Gamma } is well defined, and it depends just of the adapted connection Γ g {\displaystyle \Gamma ^{g}} . Therefore, Einstein–Cartan gravitation theory can be formulated as the metric-affine one, without appealing to the metricity constraint.

In metric-affine gravitation theory, in comparison with the Einstein – Cartan one, a question on a matter source of a non-metricity tensor arises. It is so called hypermomentum, e.g., a Noether current of a scaling symmetry.

See also

References

  1. ^ Hehl, F. W.; McCrea, J. D.; Mielke, E. W.; Ne'eman, Y. (July 1995). "Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance". Physics Reports. 258 (1–2): 1–171. arXiv:gr-qc/9402012. doi:10.1016/0370-1573(94)00111-F.
  2. ^ Lord, Eric A. (February 1978). "The metric-affine gravitational theory as the gauge theory of the affine group". Physics Letters A. 65 (1): 1–4. doi:10.1016/0375-9601(78)90113-5.
  3. ^ Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M. (1998-05-28). "Gauge theory correlators from non-critical string theory". Physics Letters B. 428 (1): 105–114. arXiv:hep-th/9802109. doi:10.1016/S0370-2693(98)00377-3. ISSN 0370-2693.
  4. ^ Sardanashvily, G. (2002). "On the geometric foundation of classical gauge gravitation theory". arXiv:gr-qc/0201074.
  • Hehl, F.; McCrea, J.; Ne'eman, Y. (1995). "Metric-affine gauge theory of gravity: field equations". Physics Reports. 258 (1–2): 1–171. arXiv:gr-qc/9402012. doi:10.1016/0370-1573(94)00111-F. ISSN 0370-1573.
  • Vitagliano, V.; Sotiriou, T.; Liberati, S. (2011). "The dynamics of metric-affine gravity". Annals of Physics. 326 (5): 1259–1273. arXiv:1008.0171. doi:10.1016/j.aop.2011.02.008.
  • G. Sardanashvily, Classical gauge gravitation theory, Int. J. Geom. Methods Mod. Phys. 8 (2011) 1869–1895; arXiv:1110.1176
  • C. Karahan, A. Altas, D. Demir, Scalars, vectors and tensors from metric-affine gravity, General Relativity and Gravitation 45 (2013) 319–343; arXiv:1110.5168