Onsager–Machlup function

Concept in mathematics

The Onsager–Machlup function is a function that summarizes the dynamics of a continuous stochastic process. It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system. It is named after Lars Onsager and Stefan Machlup [de] who were the first to consider such probability densities.[1]

The dynamics of a continuous stochastic process X from time t = 0 to t = T in one dimension, satisfying a stochastic differential equation

d X t = b ( X t ) d t + σ ( X t ) d W t {\displaystyle dX_{t}=b(X_{t})\,dt+\sigma (X_{t})\,dW_{t}}

where W is a Wiener process, can in approximation be described by the probability density function of its value xi at a finite number of points in time ti:

p ( x 1 , , x n ) = ( i = 1 n 1 1 2 π σ ( x i ) 2 Δ t i ) exp ( i = 1 n 1 L ( x i , x i + 1 x i Δ t i ) Δ t i ) {\displaystyle p(x_{1},\ldots ,x_{n})=\left(\prod _{i=1}^{n-1}{\frac {1}{\sqrt {2\pi \sigma (x_{i})^{2}\Delta t_{i}}}}\right)\exp \left(-\sum _{i=1}^{n-1}L\left(x_{i},{\frac {x_{i+1}-x_{i}}{\Delta t_{i}}}\right)\,\Delta t_{i}\right)}

where

L ( x , v ) = 1 2 ( v b ( x ) σ ( x ) ) 2 {\displaystyle L(x,v)={\frac {1}{2}}\left({\frac {v-b(x)}{\sigma (x)}}\right)^{2}}

and Δti = ti+1ti > 0, t1 = 0 and tn = T. A similar approximation is possible for processes in higher dimensions. The approximation is more accurate for smaller time step sizes Δti, but in the limit Δti → 0 the probability density function becomes ill defined, one reason being that the product of terms

1 2 π σ ( x i ) 2 Δ t i {\displaystyle {\frac {1}{\sqrt {2\pi \sigma (x_{i})^{2}\Delta t_{i}}}}}

diverges to infinity. In order to nevertheless define a density for the continuous stochastic process X, ratios of probabilities of X lying within a small distance ε from smooth curves φ1 and φ2 are considered:[2]

P ( | X t φ 1 ( t ) | ε  for every  t [ 0 , T ] ) P ( | X t φ 2 ( t ) | ε  for every  t [ 0 , T ] ) exp ( 0 T L ( φ 1 ( t ) , φ ˙ 1 ( t ) ) d t + 0 T L ( φ 2 ( t ) , φ ˙ 2 ( t ) ) d t ) {\displaystyle {\frac {P\left(\left|X_{t}-\varphi _{1}(t)\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}{P\left(\left|X_{t}-\varphi _{2}(t)\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}}\to \exp \left(-\int _{0}^{T}L\left(\varphi _{1}(t),{\dot {\varphi }}_{1}(t)\right)\,dt+\int _{0}^{T}L\left(\varphi _{2}(t),{\dot {\varphi }}_{2}(t)\right)\,dt\right)}

as ε → 0, where L is the Onsager–Machlup function.

Definition

Consider a d-dimensional Riemannian manifold M and a diffusion process X = {Xt : 0 ≤ tT} on M with infinitesimal generator 1/2ΔM + b, where ΔM is the Laplace–Beltrami operator and b is a vector field. For any two smooth curves φ1, φ2 : [0, T] → M,

lim ε 0 P ( ρ ( X t , φ 1 ( t ) ) ε  for every  t [ 0 , T ] ) P ( ρ ( X t , φ 2 ( t ) ) ε  for every  t [ 0 , T ] ) = exp ( 0 T L ( φ 1 ( t ) , φ ˙ 1 ( t ) ) d t + 0 T L ( φ 2 ( t ) , φ ˙ 2 ( t ) ) d t ) {\displaystyle \lim _{\varepsilon \downarrow 0}{\frac {P\left(\rho (X_{t},\varphi _{1}(t))\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}{P\left(\rho (X_{t},\varphi _{2}(t))\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}}=\exp \left(-\int _{0}^{T}L\left(\varphi _{1}(t),{\dot {\varphi }}_{1}(t)\right)\,dt+\int _{0}^{T}L\left(\varphi _{2}(t),{\dot {\varphi }}_{2}(t)\right)\,dt\right)}

where ρ is the Riemannian distance, φ ˙ 1 , φ ˙ 2 {\displaystyle \scriptstyle {\dot {\varphi }}_{1},{\dot {\varphi }}_{2}} denote the first derivatives of φ1, φ2, and L is called the Onsager–Machlup function.

The Onsager–Machlup function is given by[3][4][5]

L ( x , v ) = 1 2 v b ( x ) x 2 + 1 2 div b ( x ) 1 12 R ( x ) , {\displaystyle L(x,v)={\tfrac {1}{2}}\|v-b(x)\|_{x}^{2}+{\tfrac {1}{2}}\operatorname {div} \,b(x)-{\tfrac {1}{12}}R(x),}

where || ⋅ ||x is the Riemannian norm in the tangent space Tx(M) at x, div b(x) is the divergence of b at x, and R(x) is the scalar curvature at x.

Examples

The following examples give explicit expressions for the Onsager–Machlup function of a continuous stochastic processes.

Wiener process on the real line

The Onsager–Machlup function of a Wiener process on the real line R is given by[6]

L ( x , v ) = 1 2 | v | 2 . {\displaystyle L(x,v)={\tfrac {1}{2}}|v|^{2}.}

Proof: Let X = {Xt : 0 ≤ tT} be a Wiener process on R and let φ : [0, T] → R be a twice differentiable curve such that φ(0) = X0. Define another process Xφ = {Xtφ : 0 ≤ tT} by Xtφ = Xtφ(t) and a measure Pφ by

P φ = exp ( 0 T φ ˙ ( t ) d X t φ + 0 T 1 2 | φ ˙ ( t ) | 2 d t ) d P . {\displaystyle P^{\varphi }=\exp \left(\int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}^{\varphi }+\int _{0}^{T}{\tfrac {1}{2}}\left|{\dot {\varphi }}(t)\right|^{2}\,dt\right)\,dP.}

For every ε > 0, the probability that |Xtφ(t)| ≤ ε for every t ∈ [0, T] satisfies

P ( | X t φ ( t ) | ε  for every  t [ 0 , T ] ) = P ( | X t φ | ε  for every  t [ 0 , T ] ) = { | X t φ | ε  for every  t [ 0 , T ] } exp ( 0 T φ ˙ ( t ) d X t φ 0 T 1 2 | φ ˙ ( t ) | 2 d t ) d P φ . {\displaystyle {\begin{aligned}P\left(\left|X_{t}-\varphi (t)\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)&=P\left(\left|X_{t}^{\varphi }\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)\\&=\int _{\left\{\left|X_{t}^{\varphi }\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right\}}\exp \left(-\int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}^{\varphi }-\int _{0}^{T}{\tfrac {1}{2}}|{\dot {\varphi }}(t)|^{2}\,dt\right)\,dP^{\varphi }.\end{aligned}}}

By Girsanov's theorem, the distribution of Xφ under Pφ equals the distribution of X under P, hence the latter can be substituted by the former:

P ( | X t φ ( t ) | ε  for every  t [ 0 , T ] ) = { | X t φ | ε  for every  t [ 0 , T ] } exp ( 0 T φ ˙ ( t ) d X t 0 T 1 2 | φ ˙ ( t ) | 2 d t ) d P . {\displaystyle P(|X_{t}-\varphi (t)|\leq \varepsilon {\text{ for every }}t\in [0,T])=\int _{\left\{\left|X_{t}^{\varphi }\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right\}}\exp \left(-\int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}-\int _{0}^{T}{\tfrac {1}{2}}|{\dot {\varphi }}(t)|^{2}\,dt\right)\,dP.}

By Itō's lemma it holds that

0 T φ ˙ ( t ) d X t = φ ˙ ( T ) X T 0 T φ ¨ ( t ) X t d t , {\displaystyle \int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}={\dot {\varphi }}(T)X_{T}-\int _{0}^{T}{\ddot {\varphi }}(t)X_{t}\,dt,}

where φ ¨ {\displaystyle \scriptstyle {\ddot {\varphi }}} is the second derivative of φ, and so this term is of order ε on the event where |Xt| ≤ ε for every t ∈ [0, T] and will disappear in the limit ε → 0, hence

lim ε 0 P ( | X t φ ( t ) | ε  for every  t [ 0 , T ] ) P ( | X t | ε  for every  t [ 0 , T ] ) = exp ( 0 T 1 2 | φ ˙ ( t ) | 2 d t ) . {\displaystyle \lim _{\varepsilon \downarrow 0}{\frac {P(|X_{t}-\varphi (t)|\leq \varepsilon {\text{ for every }}t\in [0,T])}{P(|X_{t}|\leq \varepsilon {\text{ for every }}t\in [0,T])}}=\exp \left(-\int _{0}^{T}{\tfrac {1}{2}}|{\dot {\varphi }}(t)|^{2}\,dt\right).}

Diffusion processes with constant diffusion coefficient on Euclidean space

The Onsager–Machlup function in the one-dimensional case with constant diffusion coefficient σ is given by[7]

L ( x , v ) = 1 2 | v b ( x ) σ | 2 + 1 2 d b d x ( x ) . {\displaystyle L(x,v)={\frac {1}{2}}\left|{\frac {v-b(x)}{\sigma }}\right|^{2}+{\frac {1}{2}}{\frac {db}{dx}}(x).}

In the d-dimensional case, with σ equal to the unit matrix, it is given by[8]

L ( x , v ) = 1 2 v b ( x ) 2 + 1 2 ( div b ) ( x ) , {\displaystyle L(x,v)={\frac {1}{2}}\|v-b(x)\|^{2}+{\frac {1}{2}}(\operatorname {div} \,b)(x),}

where || ⋅ || is the Euclidean norm and

( div b ) ( x ) = i = 1 d x i b i ( x ) . {\displaystyle (\operatorname {div} \,b)(x)=\sum _{i=1}^{d}{\frac {\partial }{\partial x_{i}}}b_{i}(x).}

Generalizations

Generalizations have been obtained by weakening the differentiability condition on the curve φ.[9] Rather than taking the maximum distance between the stochastic process and the curve over a time interval, other conditions have been considered such as distances based on completely convex norms[10] and Hölder, Besov and Sobolev type norms.[11]

Applications

The Onsager–Machlup function can be used for purposes of reweighting and sampling trajectories,[12] as well as for determining the most probable trajectory of a diffusion process.[13][14]

See also

References

  1. ^ Onsager, L. and Machlup, S. (1953)
  2. ^ Stratonovich, R. (1971)
  3. ^ Takahashi, Y. and Watanabe, S. (1980)
  4. ^ Fujita, T. and Kotani, S. (1982)
  5. ^ Wittich, Olaf
  6. ^ Ikeda, N. and Watanabe, S. (1980), Chapter VI, Section 9
  7. ^ Dürr, D. and Bach, A. (1978)
  8. ^ Ikeda, N. and Watanabe, S. (1980), Chapter VI, Section 9
  9. ^ Zeitouni, O. (1989)
  10. ^ Shepp, L. and Zeitouni, O. (1993)
  11. ^ Capitaine, M. (1995)
  12. ^ Adib, A.B. (2008).
  13. ^ Adib, A.B. (2008).
  14. ^ Dürr, D. and Bach, A. (1978).

Bibliography

  • Adib, A.B. (2008). "Stochastic actions for diffusive dynamics: Reweighting, sampling, and minimization". J. Phys. Chem. B. 112 (19): 5910–5916. arXiv:0712.1255. doi:10.1021/jp0751458. PMID 17999482. S2CID 16366252.
  • Capitaine, M. (1995). "Onsager–Machlup functional for some smooth norms on Wiener space". Probab. Theory Relat. Fields. 102 (2): 189–201. doi:10.1007/bf01213388. S2CID 120675014.
  • Dürr, D. & Bach, A. (1978). "The Onsager–Machlup function as Lagrangian for the most probable path of a diffusion process". Commun. Math. Phys. 60 (2): 153–170. Bibcode:1978CMaPh..60..153D. doi:10.1007/bf01609446. S2CID 41249746.
  • Fujita, T. & Kotani, S. (1982). "The Onsager–Machlup function for diffusion processes". J. Math. Kyoto Univ. 22: 115–130. doi:10.1215/kjm/1250521863.
  • Ikeda, N. & Watanabe, S. (1980). Stochastic differential equations and diffusion processes. Kodansha-John Wiley.
  • Onsager, L. & Machlup, S. (1953). "Fluctuations and Irreversible Processes". Physical Review. 91 (6): 1505–1512. Bibcode:1953PhRv...91.1505O. doi:10.1103/physrev.91.1505.
  • Shepp, L. & Zeitouni, O. (1993). "Exponential estimates for convex norms and some applications". Barcelona Seminar on Stochastic Analysis. Vol. 32. Berlin: Birkhauser-Verlag. pp. 203–215. CiteSeerX 10.1.1.28.8641. doi:10.1007/978-3-0348-8555-3_11. ISBN 978-3-0348-9677-1. {{cite book}}: |journal= ignored (help)CS1 maint: location missing publisher (link)
  • Stratonovich, R. (1971). "On the probability functional of diffusion processes". Select. Transl. In Math. Stat. Prob. 10: 273–286.
  • Takahashi, Y.; Watanabe, S. (1981). "The probability functionals (Onsager–Machlup functions) of diffusion processes". Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Mathematics. Vol. 851. Berlin: Springer. pp. 433–463. doi:10.1007/BFb0088735. ISBN 978-3-540-10690-6. MR 0620998.
  • Wittich, Olaf. "The Onsager–Machlup Functional Revisited". {{cite journal}}: Cite journal requires |journal= (help)
  • Zeitouni, O. (1989). "On the Onsager–Machlup functional of diffusion processes around non C2 curves". Annals of Probability. 17 (3): 1037–1054. doi:10.1214/aop/1176991255.
  • Onsager–Machlup function. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Onsager-Machlup_function&oldid=22857