Plethystic substitution

Plethystic substitution is a shorthand notation for a common kind of substitution in the algebra of symmetric functions and that of symmetric polynomials. It is essentially basic substitution of variables, but allows for a change in the number of variables used.

Definition

The formal definition of plethystic substitution relies on the fact that the ring of symmetric functions Λ R ( x 1 , x 2 , ) {\displaystyle \Lambda _{R}(x_{1},x_{2},\ldots )} is generated as an R-algebra by the power sum symmetric functions

p k = x 1 k + x 2 k + x 3 k + . {\displaystyle p_{k}=x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+\cdots .}

For any symmetric function f {\displaystyle f} and any formal sum of monomials A = a 1 + a 2 + {\displaystyle A=a_{1}+a_{2}+\cdots } , the plethystic substitution f[A] is the formal series obtained by making the substitutions

p k a 1 k + a 2 k + a 3 k + {\displaystyle p_{k}\longrightarrow a_{1}^{k}+a_{2}^{k}+a_{3}^{k}+\cdots }

in the decomposition of f {\displaystyle f} as a polynomial in the pk's.

Examples

If X {\displaystyle X} denotes the formal sum X = x 1 + x 2 + {\displaystyle X=x_{1}+x_{2}+\cdots } , then f [ X ] = f ( x 1 , x 2 , ) {\displaystyle f[X]=f(x_{1},x_{2},\ldots )} .

One can write 1 / ( 1 t ) {\displaystyle 1/(1-t)} to denote the formal sum 1 + t + t 2 + t 3 + {\displaystyle 1+t+t^{2}+t^{3}+\cdots } , and so the plethystic substitution f [ 1 / ( 1 t ) ] {\displaystyle f[1/(1-t)]} is simply the result of setting x i = t i 1 {\displaystyle x_{i}=t^{i-1}} for each i. That is,

f [ 1 1 t ] = f ( 1 , t , t 2 , t 3 , ) {\displaystyle f\left[{\frac {1}{1-t}}\right]=f(1,t,t^{2},t^{3},\ldots )} .

Plethystic substitution can also be used to change the number of variables: if X = x 1 + x 2 + , x n {\displaystyle X=x_{1}+x_{2}+\cdots ,x_{n}} , then f [ X ] = f ( x 1 , , x n ) {\displaystyle f[X]=f(x_{1},\ldots ,x_{n})} is the corresponding symmetric function in the ring Λ R ( x 1 , , x n ) {\displaystyle \Lambda _{R}(x_{1},\ldots ,x_{n})} of symmetric functions in n variables.

Several other common substitutions are listed below. In all of the following examples, X = x 1 + x 2 + {\displaystyle X=x_{1}+x_{2}+\cdots } and Y = y 1 + y 2 + {\displaystyle Y=y_{1}+y_{2}+\cdots } are formal sums.

  • If f {\displaystyle f} is a homogeneous symmetric function of degree d {\displaystyle d} , then
    f [ t X ] = t d f ( x 1 , x 2 , ) {\displaystyle f[tX]=t^{d}f(x_{1},x_{2},\ldots )}
  • If f {\displaystyle f} is a homogeneous symmetric function of degree d {\displaystyle d} , then
    f [ X ] = ( 1 ) d ω f ( x 1 , x 2 , ) {\displaystyle f[-X]=(-1)^{d}\omega f(x_{1},x_{2},\ldots )} ,
where ω {\displaystyle \omega } is the well-known involution on symmetric functions that sends a Schur function s λ {\displaystyle s_{\lambda }} to the conjugate Schur function s λ {\displaystyle s_{\lambda ^{\ast }}} .
  • The substitution S : f f [ X ] {\displaystyle S:f\mapsto f[-X]} is the antipode for the Hopf algebra structure on the Ring of symmetric functions.
  • p n [ X + Y ] = p n [ X ] + p n [ Y ] {\displaystyle p_{n}[X+Y]=p_{n}[X]+p_{n}[Y]}
  • The map Δ : f f [ X + Y ] {\displaystyle \Delta :f\mapsto f[X+Y]} is the coproduct for the Hopf algebra structure on the ring of symmetric functions.
  • h n [ X ( 1 t ) ] {\displaystyle h_{n}\left[X(1-t)\right]} is the alternating Frobenius series for the exterior algebra of the defining representation of the symmetric group, where h n {\displaystyle h_{n}} denotes the complete homogeneous symmetric function of degree n {\displaystyle n} .
  • h n [ X / ( 1 t ) ] {\displaystyle h_{n}\left[X/(1-t)\right]} is the Frobenius series for the symmetric algebra of the defining representation of the symmetric group.
  • Combinatorics, Symmetric Functions, and Hilbert Schemes (Haiman, 2002)

References

  • M. Haiman, Combinatorics, Symmetric Functions, and Hilbert Schemes, Current Developments in Mathematics 2002, no. 1 (2002), pp. 39–111.