Nitrifikáció

Kérdéses jogállású szövegegyezés
Úgy tűnik, hogy ez a szócikk vagy szakasz külső forrás szó szerinti másolata, és ez a szerzői jog megsértését jelentheti. | Győződj meg róla, hogy az azonos szövegek közül melyik keletkezett előbb! Ha tudsz, kérj engedélyt a korábbi külső szöveg felhasználására a Wikipédia:Engedélykérés lapon leírtak szerint, vagy szerkeszd bátran a lapot, és távolíts el minden jogvédett részt belőle! Kövesd a formai és a stilisztikai útmutatóban leírtakat! Ha sikerült eltávolítani a másolt szöveget, vedd le ezt a sablont!
Ehhez a szócikkhez további forrásmegjelölések, lábjegyzetek szükségesek az ellenőrizhetőség érdekében.
Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts a szócikk fejlesztésében további megbízható források hozzáadásával.
Ennek a szócikknek hiányzik vagy nagyon rövid, illetve nem elég érthető a bevezetője.
Kérjük, segíts olyan bevezetőt írni, ami jól összefoglalja a cikk tartalmát, vagy jelezd észrevételeidet a cikk vitalapján.

A nitrogénkörforgás

A nitrogénkörforgás gázfázisú biogeokémiai ciklus, melyben az elemi nitrogén – a növények számára is felvehető – nitrátokká, nitritekké alakul, majd a bomlási folyamatok során ammónia és végül ismét elemi nitrogén lesz belőle. A ciklus szervetlen tartaléka a légköri nitrogén, ám ezt csak kevés élőlény tudja hasznosítani a szervezetében. A nitrogénmolekulában a két atomot erős hármas kötés kapcsolja össze, ezért nehezen vihető reakcióba. Csak egyes mikroorganizmusok tudják az elemi nitrogént ammóniasókká és nitritekké átalakítani. Ez a folyamat főként az élőlények és a litoszféra között megy végbe.[1]

Nitrifikáció

A biológiai oxidáció második fázisában, az úgynevezett nitrogénfázisban lejátszódó folyamatok összefoglaló neve nitrifikáció. A szén-bontó baktériumok gyorsabban működnek, mint a nitrifikáló baktériumok, ezért először a szerves anyag többsége oxidálódik, és csak utána történik meg a nitrifikáció. Mind a nitrobakter, mind a nitrosomonas szén-dioxidot használ szén forrásul a növekedéséhez, a nitrogénvegyületeket mint elektronakceptort használják. A nitrobakter a nitrosomonasnál sokkal gyorsabban növekszik, ezért a keletkezett nitrit igen gyorsan továbboxidálódik nitráttá. A nitrit ezért soha nem halmozódik fel nagy mennyiségben, a teljes nitrifikációs folyamat sebességmeghatározó lépése az ammónia nitritté történő átalakulása. Mind a nitrifikáló baktériumok szaporodási sebessége, mind az ammónium és nitrit oxidációja erősen hőmérsékletfüggő. A szaporodási sebesség, s ennek megfelelően a nitrifikációs sebesség is 30-35 °C hőmérséklet között maximális. Ebben a tartományban viszonylag állandó. 35 °C fölött ugyanakkor csökken.

Gyakran a természetes eredetű szerves anyagoknál jóval jelentősebb és nagyobb környezetterhelést jelentő nitrogénforrás a szennyvíz, valamint a mezőgazdasági eredet (például műtrágya).

A lebontó baktériumok a nitrogént részben a saját növekedésükhöz használják fel. A többi ammóniát a nitrifikáló baktériumok nitritté, majd nitráttá alakítják, ezekben a formákban a nitrogén a vízinövények számára is hozzáférhetővé válik. Anaerob (anoxikus) körülmények között a denitrifikáló baktériumok a a nitrátot elemi nitrogénné redukálják, ami a növények számára már nem hasznosítható.[2]

Míg az elemi nitrogén kevéssé reakcióképes, az egyéb nitrogénformák jóval könnyebben reagálnak: jóformán minden életjelenségben részt vesznek, szerves és szervetlen vegyületekben egyaránt.

A nitrogénnek számos oxidációs foka létezik, a legredukáltabb az ammónia és a legtöbb szerves vegyület (−3), a legoxidáltabb a nitrát (+5).

A nitrogénciklus első lépésében megkötött elemi nitrogénből keletkezett szerves nitrogénvegyületek bomlásával ammónia keletkezik. Ha vizes környezetbe szennyvízkibocsátás vagy növényi részek bomlása révén ammónia kerül, akkor az – feltéve, hogy kellő mennyiségű oxigén áll rendelkezésre – mindig nitritté és nitráttá oxidálódik. Az oxidációt a csaknem minden vízben előforduló Nitrobakter és Nitrosomonas baktériumok végzik.

NH 4 +   + OH   + 3 2 O 2 Nitrosomonas NO 2   + H +   + 2 H 2 O {\displaystyle {\ce {NH_{4}+\ +OH^{-}\ +3/2O_{2}\;{\xrightarrow {Nitrosomonas}}\;NO_{2}^{-}\ +H^{+}\ +2H_{2}O}}}
NO 2   + 1 2 O 2 Nitrobacter NO 3 {\displaystyle {\ce {NO_{2}^{-}\ +1/2O_{2}\;{\xrightarrow {Nitrobacter}}\;NO_{3}^{-}}}}

A reakcióegyenletekből látható, hogy a nitrifikáció a vízből jelentős mennyiségű oxigént fogyaszt el. 1 g NH+4 oxidációja 4,57 g O2-t igényel.[3]

Ahhoz, hogy a nitrifikáció termékeit a mikrobák és a növények be tudják építeni a sejtjeikbe, először át kell azokat alakítaniuk ammóniává, ez az asszimilációs nitrátredukció. Ez a folyamat nem tévesztendő össze a denitrifikációval (más néven légzési vagy disszimilációs nitrátredukcival), utóbbi folyamatban ugyanis a felvett nitrát nitrogénné alakul. A nitrogén megkötésével ellentétes folyamat a denitrifikáció, ennek révén elemi nitrogén keletkezik, mely visszajut a légkörbe. A nitrifikáció és denitrifikáció egyensúlyban van, így a légkör nitrogéntartalma viszonylag állandó.[1]


Nitrifikáció a biológiai szennyvíztisztítóban

Az aerob szerves anyag átalakítás során keletkező szennyvíziszap nitrogéntartalma ugyan az iszapkorral valamelyest változik (5-7% között), ez azonban a lakossági szennyvizeknél a tisztítóba érkező redukált-nitrogén terhelés csupán 15-30%-ának a felvételét jelenti. A többlet nitrogént (ammóniummá alakított összes redukált nitrogén) nitritté, vagy nitráttá történő oxidációval, majd azok nitrogénné történő redukciójával lehet a szennyvízből eltávolítani. Az utóbbi folyamat azonban már az oxigén kizárását igényli, mert a heterotrófok csak oxigén hiányában hajlandók az oxidált nitrogénvegyületek oxigénjét hasznosítani. Egyebekben a heterotrófok többsége képes arra.

Az ammónium mikrobiális oxidációját, a nitrifikációt ezzel szemben döntően autotróf mikroorganizmusok végzik. Ezek szénforrásként a szén-dioxidot (a víz hidrogén-karbonát tartalma) hasznosítják, míg szaporodásukhoz az energiát az ammónium, vagy nitrit oxidációjából nyerik. Bár kimutatták már néhány heterotróf nitrifikáló faj jelenlétét is az ilyen rendszerekben, tevékenységük a gyakorlatban elhanyagolható az autotróf nitrifikálókéhoz képest (Robertson et al., 1988; Wijfells et al., 1995).

A nitrifikációt tehát döntően két autotróf baktérium csoport végzi, az ammónium és a nitrit oxidálók (Nitrosomonas illetőleg Nitrobacter). Napjainkban a rohamosan fejlődő molekuláris technikák, mint a gél elektroforézis (DGGE – denaturing gradient gelelectrophoresis) és a FISH (fluorescent in situ hybridisation) igazolták ugyan sokféle nitrifikáló faj képességét az ilyen oxidációra, döntő szerepe egyértelműen a két nevesített csoportnak van abban. A nitrifikáció (ammónium nitráttá történő oxidációja) két egymást követő lépcsőben játszódik le. Az első az ammónium oxidálódik nitritté (Nitrosomonas), másodikban a nitrit oxidációja nitráttá (Nitrobacter).

A folyamat sztöchiometriájának megfelelően ammónium-N nitráttá történő oxidációja oxigént igényel. A folyamatban keletkező sav ugyanakkor CaCO3-nak megfelelő lúgosságot semlegesít. Általában az ammónium oxidációja a teljes átalakítási sor sebesség-meghatározó lépcsője, és nitrit mennyisége ritkán ér el jelentősebb koncentrációt a vízben. Mivel azonban a nitrit oxidáló Nitrobacter fajok sokkal érzékenyebbek a környezet hatásaira, mint az ammóniumot oxidáló Nitrosomonas a nitrifikáció beindulásakor, vagy kedvezőtlen üzemeltetési feltételek esetén az aerob szennyvíztisztítókban mégis gyakran jelentkezhet nitritfelszaporodás.[4]

Jegyzetek

  1. a b Agro-ökológia|Digitális Tankönyvtár (hu-HU nyelven). www.tankonyvtar.hu. (Hozzáférés: 2015. december 10.)
  2. A nitrogén-ciklus. www.agr.unideb.hu. (Hozzáférés: 2015. december 10.)
  3. Környezettechnika|Digitális Tankönyvtár (hu-HU nyelven). www.tankonyvtar.hu. (Hozzáférés: 2015. december 10.)
  4. Dr. Kárpáti Árpád: Szennyvíztisztítás