Liste over integraler av trigonometriske funksjoner

Trigonometri

Historie

Anvendelser

Hypotenus

Funksjoner

Inverse funksjoner

Referanse

Identiteter

Eksakte konstanter

Trigonometriske tabeller

Setninger

Sinussetningen

Cosinussetningen

Tangenssetningen

Pytagoras’ læresetning

Matematisk analyse

Integraler av funksjoner

Deriverte av funksjoner

Integraler av inverse funksjoner

Denne boksen:
  • vis
  • diskuter
  • rediger

Det følgende er en liste over integraler (antideriverte funksjoner) av trigonometriske funksjoner. For antideriverte som involverer både eksponentialfunksjoner og trigonometriske funksjoner, se Liste over integraler av eksponentialfunksjoner. For en liste over antideriverte funksjoner, se lister over integraler. Se også trigonometrisk integral.

Generelt, hvis funksjonen sin ( x ) {\displaystyle \sin(x)} er en hvilken som helst trigonometrisk funksjon, og cos ( x ) {\displaystyle \cos(x)} er dens deriverte,

a cos n x d x = a n sin n x + c {\displaystyle \int a\cos nx\;dx={\frac {a}{n}}\sin nx+c}

I alle formler antas konstanten a å være forskjellige fra null, og C betegner integrasjonskonstanten.

Integrander som bare involverer sinus

sin a x d x = 1 a cos a x + C {\displaystyle \int \sin ax\;dx=-{\frac {1}{a}}\cos ax+C\,\!}


sin 2 a x d x = x 2 1 4 a sin 2 a x + C = x 2 1 2 a sin a x cos a x + C {\displaystyle \int \sin ^{2}{ax}\;dx={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C\!}


x sin 2 a x d x = x 2 4 x 4 a sin 2 a x 1 8 a 2 cos 2 a x + C {\displaystyle \int x\sin ^{2}{ax}\;dx={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C\!}


x 2 sin 2 a x d x = x 3 6 ( x 2 4 a 1 8 a 3 ) sin 2 a x x 4 a 2 cos 2 a x + C {\displaystyle \int x^{2}\sin ^{2}{ax}\;dx={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C\!}


sin b 1 x sin b 2 x d x = sin ( ( b 1 b 2 ) x ) 2 ( b 1 b 2 ) sin ( ( b 1 + b 2 ) x ) 2 ( b 1 + b 2 ) + C (for  | b 1 | | b 2 | ) {\displaystyle \int \sin b_{1}x\sin b_{2}x\;dx={\frac {\sin((b_{1}-b_{2})x)}{2(b_{1}-b_{2})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(for }}|b_{1}|\neq |b_{2}|{\mbox{)}}\,\!}


sin n a x d x = sin n 1 a x cos a x n a + n 1 n sin n 2 a x d x (for  n > 0 ) {\displaystyle \int \sin ^{n}{ax}\;dx=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}


d x sin a x = 1 a ln | tan a x 2 | + C {\displaystyle \int {\frac {dx}{\sin ax}}={\frac {1}{a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}


d x sin n a x = cos a x a ( 1 n ) sin n 1 a x + n 2 n 1 d x sin n 2 a x (for  n > 1 ) {\displaystyle \int {\frac {dx}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}


x sin a x d x = sin a x a 2 x cos a x a + C {\displaystyle \int x\sin ax\;dx={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C\,\!}


x n sin a x d x = x n a cos a x + n a x n 1 cos a x d x = k = 0 2 k n ( 1 ) k + 1 x n 2 k a 1 + 2 k n ! ( n 2 k ) ! cos a x + k = 0 2 k + 1 n ( 1 ) k x n 1 2 k a 2 + 2 k n ! ( n 2 k 1 ) ! sin a x (for  n > 0 ) {\displaystyle \int x^{n}\sin ax\;dx=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\;dx=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}


a 2 a 2 x 2 sin 2 n π x a d x = a 3 ( n 2 π 2 6 ) 24 n 2 π 2 (for  n = 2 , 4 , 6... ) {\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=2,4,6...{\mbox{)}}\,\!}


sin a x x d x = n = 0 ( 1 ) n ( a x ) 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! + C {\displaystyle \int {\frac {\sin ax}{x}}dx=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C\,\!}


sin a x x n d x = sin a x ( n 1 ) x n 1 + a n 1 cos a x x n 1 d x {\displaystyle \int {\frac {\sin ax}{x^{n}}}dx=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}dx\,\!}


d x 1 ± sin a x = 1 a tan ( a x 2 π 4 ) + C {\displaystyle \int {\frac {dx}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}


x d x 1 + sin a x = x a tan ( a x 2 π 4 ) + 2 a 2 ln | cos ( a x 2 π 4 ) | + C {\displaystyle \int {\frac {x\;dx}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}


x d x 1 sin a x = x a cot ( π 4 a x 2 ) + 2 a 2 ln | sin ( π 4 a x 2 ) | + C {\displaystyle \int {\frac {x\;dx}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}


sin a x d x 1 ± sin a x = ± x + 1 a tan ( π 4 a x 2 ) + C {\displaystyle \int {\frac {\sin ax\;dx}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}

Integrander som bare involverer cosinus

cos a x d x = 1 a sin a x + C {\displaystyle \int \cos ax\;dx={\frac {1}{a}}\sin ax+C\,\!}
cos 2 a x d x = x 2 + 1 4 a sin 2 a x + C = x 2 + 1 2 a sin a x cos a x + C {\displaystyle \int \cos ^{2}{ax}\;dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}
cos n a x d x = cos n 1 a x sin a x n a + n 1 n cos n 2 a x d x (for  n > 0 ) {\displaystyle \int \cos ^{n}ax\;dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
x cos a x d x = cos a x a 2 + x sin a x a + C {\displaystyle \int x\cos ax\;dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}
x 2 cos 2 a x d x = x 3 6 + ( x 2 4 a 1 8 a 3 ) sin 2 a x + x 4 a 2 cos 2 a x + C {\displaystyle \int x^{2}\cos ^{2}{ax}\;dx={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C\!}
x n cos a x d x = x n sin a x a n a x n 1 sin a x d x = k = 0 2 k + 1 n ( 1 ) k x n 2 k 1 a 2 + 2 k n ! ( n 2 k 1 ) ! cos a x + k = 0 2 k n ( 1 ) k x n 2 k a 1 + 2 k n ! ( n 2 k ) ! sin a x {\displaystyle \int x^{n}\cos ax\;dx={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;dx\,=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\!}
cos a x x d x = ln | a x | + k = 1 ( 1 ) k ( a x ) 2 k 2 k ( 2 k ) ! + C {\displaystyle \int {\frac {\cos ax}{x}}dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}
cos a x x n d x = cos a x ( n 1 ) x n 1 a n 1 sin a x x n 1 d x (for  n 1 ) {\displaystyle \int {\frac {\cos ax}{x^{n}}}dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
d x cos a x = 1 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
d x cos n a x = sin a x a ( n 1 ) cos n 1 a x + n 2 n 1 d x cos n 2 a x (for  n > 1 ) {\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}
d x 1 + cos a x = 1 a tan a x 2 + C {\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
d x 1 cos a x = 1 a cot a x 2 + C {\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
x d x 1 + cos a x = x a tan a x 2 + 2 a 2 ln | cos a x 2 | + C {\displaystyle \int {\frac {x\;dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
x d x 1 cos a x = x a cot a x 2 + 2 a 2 ln | sin a x 2 | + C {\displaystyle \int {\frac {x\;dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
cos a x d x 1 + cos a x = x 1 a tan a x 2 + C {\displaystyle \int {\frac {\cos ax\;dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
cos a x d x 1 cos a x = x 1 a cot a x 2 + C {\displaystyle \int {\frac {\cos ax\;dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
cos a 1 x cos a 2 x d x = sin ( a 1 a 2 ) x 2 ( a 1 a 2 ) + sin ( a 1 + a 2 ) x 2 ( a 1 + a 2 ) + C (for  | a 1 | | a 2 | ) {\displaystyle \int \cos a_{1}x\cos a_{2}x\;dx={\frac {\sin(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+{\frac {\sin(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}

Integrander som bare involverer tangens

tan a x d x = 1 a ln | cos a x | + C = 1 a ln | sec a x | + C {\displaystyle \int \tan ax\;dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
tan n a x d x = 1 a ( n 1 ) tan n 1 a x tan n 2 a x d x (for  n 1 ) {\displaystyle \int \tan ^{n}ax\;dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
d x q tan a x + p = 1 p 2 + q 2 ( p x + q a ln | q sin a x + p cos a x | ) + C (for  p 2 + q 2 0 ) {\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(for }}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}


d x tan a x = 1 a ln | sin a x | + C {\displaystyle \int {\frac {dx}{\tan ax}}={\frac {1}{a}}\ln |\sin ax|+C\,\!}
d x tan a x + 1 = x 2 + 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {dx}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
d x tan a x 1 = x 2 + 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {dx}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
tan a x d x tan a x + 1 = x 2 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\tan ax\;dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
tan a x d x tan a x 1 = x 2 + 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\tan ax\;dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}

Integrander som bare involverer secans

I det 17. århundre var integralet av secansfunksjonen temaet for en velkjent formodning fremsatt i 1640-årene av Henry Bond. Problemet ble løst av Isaac Barrow[1] Det var opprinnelig nødvendig for kartografi. Se Integralet av secansfunksjonen.

sec a x d x = 1 a ln | sec a x + tan a x | + C {\displaystyle \int \sec {ax}\,dx={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C}
sec 2 x d x = tan x + C {\displaystyle \int \sec ^{2}{x}\,dx=\tan {x}+C}
sec n a x d x = sec n 1 a x tan a x a ( n 1 ) + n 2 n 1 sec n 2 a x d x  (for  n 1 ) {\displaystyle \int \sec ^{n}{ax}\,dx={\frac {\sec ^{n-1}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
sec n x d x = sec n 2 x tan x n 1 + n 2 n 1 sec n 2 x d x {\displaystyle \int \sec ^{n}{x}\,dx={\frac {\sec ^{n-2}{x}\tan {x}}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{x}\,dx} [2]
d x sec x + 1 = x tan x 2 + C {\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}
d x sec x 1 = x cot x 2 + C {\displaystyle \int {\frac {dx}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}

Integrander som bare involverer cosecans

csc a x d x = 1 a ln | csc a x + cot a x | + C {\displaystyle \int \csc {ax}\,dx=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}
csc 2 x d x = cot x + C {\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}+C}
csc n a x d x = csc n 1 a x cos a x a ( n 1 ) + n 2 n 1 csc n 2 a x d x  (for  n 1 ) {\displaystyle \int \csc ^{n}{ax}\,dx=-{\frac {\csc ^{n-1}{ax}\cos {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
d x csc x + 1 = x 2 sin x 2 cos x 2 + sin x 2 + C {\displaystyle \int {\frac {dx}{\csc {x}+1}}=x-{\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}}+C}
d x csc x 1 = 2 sin x 2 cos x 2 sin x 2 x + C {\displaystyle \int {\frac {dx}{\csc {x}-1}}={\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}-x+C}

Integrander som bare involverer cotangens

cot a x d x = 1 a ln | sin a x | + C {\displaystyle \int \cot ax\;dx={\frac {1}{a}}\ln |\sin ax|+C\,\!}
cot n a x d x = 1 a ( n 1 ) cot n 1 a x cot n 2 a x d x (for  n 1 ) {\displaystyle \int \cot ^{n}ax\;dx=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
d x 1 + cot a x = tan a x d x tan a x + 1 {\displaystyle \int {\frac {dx}{1+\cot ax}}=\int {\frac {\tan ax\;dx}{\tan ax+1}}\,\!}
d x 1 cot a x = tan a x d x tan a x 1 {\displaystyle \int {\frac {dx}{1-\cot ax}}=\int {\frac {\tan ax\;dx}{\tan ax-1}}\,\!}

Integrander som involverer både sinus og cosinus

d x cos a x ± sin a x = 1 a 2 ln | tan ( a x 2 ± π 8 ) | + C {\displaystyle \int {\frac {dx}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
d x ( cos a x ± sin a x ) 2 = 1 2 a tan ( a x π 4 ) + C {\displaystyle \int {\frac {dx}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
d x ( cos x + sin x ) n = 1 n 1 ( sin x cos x ( cos x + sin x ) n 1 2 ( n 2 ) d x ( cos x + sin x ) n 2 ) {\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}
cos a x d x cos a x + sin a x = x 2 + 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\cos ax\;dx}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
cos a x d x cos a x sin a x = x 2 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\cos ax\;dx}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
sin a x d x cos a x + sin a x = x 2 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
sin a x d x cos a x sin a x = x 2 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
cos a x d x sin a x ( 1 + cos a x ) = 1 4 a tan 2 a x 2 + 1 2 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\cos ax\;dx}{\sin ax(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
cos a x d x sin a x ( 1 cos a x ) = 1 4 a cot 2 a x 2 1 2 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\cos ax\;dx}{\sin ax(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
sin a x d x cos a x ( 1 + sin a x ) = 1 4 a cot 2 ( a x 2 + π 4 ) + 1 2 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
sin a x d x cos a x ( 1 sin a x ) = 1 4 a tan 2 ( a x 2 + π 4 ) 1 2 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
sin a x cos a x d x = 1 2 a cos 2 a x + C {\displaystyle \int \sin ax\cos ax\;dx=-{\frac {1}{2a}}\cos ^{2}ax+C\,\!}
sin a 1 x cos a 2 x d x = cos ( ( a 1 a 2 ) x ) 2 ( a 1 a 2 ) cos ( ( a 1 + a 2 ) x ) 2 ( a 1 + a 2 ) + C (for  | a 1 | | a 2 | ) {\displaystyle \int \sin a_{1}x\cos a_{2}x\;dx=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
sin n a x cos a x d x = 1 a ( n + 1 ) sin n + 1 a x + C (for  n 1 ) {\displaystyle \int \sin ^{n}ax\cos ax\;dx={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
sin a x cos n a x d x = 1 a ( n + 1 ) cos n + 1 a x + C (for  n 1 ) {\displaystyle \int \sin ax\cos ^{n}ax\;dx=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
sin n a x cos m a x d x = sin n 1 a x cos m + 1 a x a ( n + m ) + n 1 n + m sin n 2 a x cos m a x d x (for  m , n > 0 ) {\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;dx=-{\frac {\sin ^{n-1}ax\cos ^{m+1}ax}{a(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}ax\cos ^{m}ax\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
også: sin n a x cos m a x d x = sin n + 1 a x cos m 1 a x a ( n + m ) + m 1 n + m sin n a x cos m 2 a x d x (for  m , n > 0 ) {\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;dx={\frac {\sin ^{n+1}ax\cos ^{m-1}ax}{a(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}ax\cos ^{m-2}ax\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
d x sin a x cos a x = 1 a ln | tan a x | + C {\displaystyle \int {\frac {dx}{\sin ax\cos ax}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
d x sin a x cos n a x = 1 a ( n 1 ) cos n 1 a x + d x sin a x cos n 2 a x (for  n 1 ) {\displaystyle \int {\frac {dx}{\sin ax\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {dx}{\sin ax\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
d x sin n a x cos a x = 1 a ( n 1 ) sin n 1 a x + d x sin n 2 a x cos a x (for  n 1 ) {\displaystyle \int {\frac {dx}{\sin ^{n}ax\cos ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {dx}{\sin ^{n-2}ax\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
sin a x d x cos n a x = 1 a ( n 1 ) cos n 1 a x + C (for  n 1 ) {\displaystyle \int {\frac {\sin ax\;dx}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
sin 2 a x d x cos a x = 1 a sin a x + 1 a ln | tan ( π 4 + a x 2 ) | + C {\displaystyle \int {\frac {\sin ^{2}ax\;dx}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
sin 2 a x d x cos n a x = sin a x a ( n 1 ) cos n 1 a x 1 n 1 d x cos n 2 a x (for  n 1 ) {\displaystyle \int {\frac {\sin ^{2}ax\;dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
sin n a x d x cos a x = sin n 1 a x a ( n 1 ) + sin n 2 a x d x cos a x (for  n 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\;dx}{\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
sin n a x d x cos m a x = sin n + 1 a x a ( m 1 ) cos m 1 a x n m + 2 m 1 sin n a x d x cos m 2 a x (for  m 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}={\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\;dx}{\cos ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
også: sin n a x d x cos m a x = sin n 1 a x a ( n m ) cos m 1 a x + n 1 n m sin n 2 a x d x cos m a x (for  m n ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}=-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\;dx}{\cos ^{m}ax}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
også: sin n a x d x cos m a x = sin n 1 a x a ( m 1 ) cos m 1 a x n 1 m 1 sin n 2 a x d x cos m 2 a x (for  m 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}={\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\;dx}{\cos ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
cos a x d x sin n a x = 1 a ( n 1 ) sin n 1 a x + C (for  n 1 ) {\displaystyle \int {\frac {\cos ax\;dx}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
cos 2 a x d x sin a x = 1 a ( cos a x + ln | tan a x 2 | ) + C {\displaystyle \int {\frac {\cos ^{2}ax\;dx}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
cos 2 a x d x sin n a x = 1 n 1 ( cos a x a sin n 1 a x ) + d x sin n 2 a x ) (for  n 1 ) {\displaystyle \int {\frac {\cos ^{2}ax\;dx}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax)}}+\int {\frac {dx}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
cos n a x d x sin m a x = cos n + 1 a x a ( m 1 ) sin m 1 a x n m 2 m 1 cos n a x d x sin m 2 a x (for  m 1 ) {\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}=-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}ax\;dx}{\sin ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
også: cos n a x d x sin m a x = cos n 1 a x a ( n m ) sin m 1 a x + n 1 n m cos n 2 a x d x sin m a x (for  m n ) {\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}={\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\;dx}{\sin ^{m}ax}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
også: cos n a x d x sin m a x = cos n 1 a x a ( m 1 ) sin m 1 a x n 1 m 1 cos n 2 a x d x sin m 2 a x (for  m 1 ) {\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}=-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\;dx}{\sin ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}

Integrander som involverer både sinus og tangens

sin a x tan a x d x = 1 a ( ln | sec a x + tan a x | sin a x ) + C {\displaystyle \int \sin ax\tan ax\;dx={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}
tan n a x d x sin 2 a x = 1 a ( n 1 ) tan n 1 ( a x ) + C (for  n 1 ) {\displaystyle \int {\frac {\tan ^{n}ax\;dx}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}

Integrander som involverer både cosinus og tangens

tan n a x d x cos 2 a x = 1 a ( n + 1 ) tan n + 1 a x + C (for  n 1 ) {\displaystyle \int {\frac {\tan ^{n}ax\;dx}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}

Integrander som involverer både sinus og cotangens

cot n a x d x sin 2 a x = 1 a ( n + 1 ) cot n + 1 a x + C (for  n 1 ) {\displaystyle \int {\frac {\cot ^{n}ax\;dx}{\sin ^{2}ax}}={\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}

Integrander som involverer både cosinus og cotangens

cot n a x d x cos 2 a x = 1 a ( 1 n ) tan 1 n a x + C (for  n 1 ) {\displaystyle \int {\frac {\cot ^{n}ax\;dx}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}

Integraler med symmetriske grenser

c c sin x d x = 0 {\displaystyle \int _{-c}^{c}\sin {x}\;dx=0\!}
c c cos x d x = 2 0 c cos x d x = 2 c 0 cos x d x = 2 sin c {\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx=2\sin {c}\!}
c c tan x d x = 0 {\displaystyle \int _{-c}^{c}\tan {x}\;dx=0\!}
a 2 a 2 x 2 cos 2 n π x a d x = a 3 ( n 2 π 2 6 ) 24 n 2 π 2 (for  n = 1 , 3 , 5... ) {\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=1,3,5...{\mbox{)}}\,\!}

Referanser

  1. ^ V. Frederick Rickey and Philip M. Tuchinsky, "An Application of Geography to Mathematics: History of the Integral of the Secant", Mathematics Magazine, volume 53, number 3, May 2980, pages 162–166
  2. ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008
  • v
  • d
  • r
Lister over integraler
Rasjonale funksjoner • Irrasjonale funksjoner • Trigonometriske funksjoner • Inverse trigonometriske funksjoner • Hyperbolske funksjoner • Inverse hyperbolske funksjoner • Eksponentialfunksjoner • Logaritmiske funksjoner